
Optimized Conversion of Categorical and Numerical
Features in Machine Learning Models

Tom Butler, Emily Liang, Wren Paris-Moe, Andrea Stine

April 28, 2020

Abstract

While some data have an explicit, numerical form, many other data, such as gender
or nationality, do not typically use numbers and are referred to as categorical data.
Thus, machine learning algorithms need a way of representing categorical information
numerically in order to be able to analyze them. Our project specifically focuses on op-
timizing the conversion of categorical features to a numerical form in order to maximize
the effectiveness of various machine learning models. Of the methods we used, we found
that Wide & Deep is the most effective model for datasets that contain high-cardinality
features, as opposed to learned embedding and one-hot encoding.

1 Introduction

Data come in a variety of types, though generally a piece of data falls into one of two types:
numerical data and categorical data. These can be further broken down into ordinal and
nominal data types for categorical features, and interval and ratio data types for numerical
data [15].

Numerical data have precise numerical values with the connotation that numbers provide.
Income, for example, is numerical data; it is sensible to talk about adding, subtracting from,
multiplying, or dividing one’s income, and for any two levels of income, we can always
compare if one individual’s income is higher than another individual’s income [3].

Ordinal data, by contrast, have an order, but are not subject to mathematical operations.
Often a survey will ask a subject to rate something from a set of options: “Strongly disagree,
disagree, neutral, agree, strongly agree,” for example. The results provided by the subject are
a case of ordinal data—able to be put in an order, but unable to be added to or subtracted
from [1].

Lastly, nominal data have no order and also are not subject to mathematical operations.
Gender, for example, is not ordered and is not subject to mathematical operations [1].

A machine learning algorithm has no issue interpreting numerical or ordinal data, since
both are typically and most naturally represented with numbers. By contrast, a machine

1

2learning algorithm does not typically have a method of processing categorical data unless the
categorical data have been provided numerical representations.

The simplest method of numerically representing categorical data is known as an ordinal
representation: For a given feature, each option within the feature is assigned a whole number
value. As an example, gender can be assigned with male = 0, female = 1, nonbinary = 2,
unspecified = 3, or any other permutation of numbers with a particular option for gender
[24].

One alternative to ordinal encoding of categorical features is one-hot encoding. For a
categorical feature, one-hot encoding involves creating unit vectors for each option within the
categorical feature, where the dimensionality of the vector equals the number of possibilities
for the categorical feature. Thus, a possible one-hot encoding for gender, as above, could
be male = (1, 0, 0, 0), female = (0, 1, 0, 0), nonbinary = (0, 0, 1, 0), unspecified = (0, 0, 0, 1).
Each value that gender can take is given its own column in the vector, thus preventing the
algorithm from weighting one over another [28].

Now, let’s consider a scenario where your model internally calculates averages and your
values for gender are ordinally encoded as male = 1, female = 2, nonbinary = 3, unspecified =
4. Thus, your model presupposes that male > female > nonbinary > unspecified. If it
were to automatically calculate averages, you might encounter a problem where it averages
male + nonbinary = 1 + 3 = 4 to find that the average is 2, which is also the encoded value
for female. This would most likely lead to poor performance in outcome predictions and
lead to unexpected predictions [28]. By providing each option with a unit vector, one-hot
encoding resolves the issue of ordinal encoding. However, one-hot encoding can be slow if
the categorical feature has a high cardinality. Further, in certain disciplines, such as natural
language processing, it may be helpful for options within a categorical feature to have a
connection to one another [2].

One example of when one-hot encoding is useful is with zip codes. Although zip codes are
comprised of a numerical representation, they are simply a representation of a certain area
[8]. Thus, when we encode our features, we encode them as categorical features rather than as
numerical ones. Using one-hot encoding in this case will ensure that the algorithm does not
weight one location over the others due to its numerical representation [5]. However, because
there are nearly 42,000 zipcodes in the U.S., this would create a vector of dimensionality
42, 000 × 1, one-hot encoding is not very efficient because of the high cardinality of the
features [27].

1.1 The Problem

Our primary problem that we were given was to find the best way to encode categorical
data for machine learning algorithms. We were presented with six different datasets, and
given different goals to accomplish for each. For example, the objective for the “Adult”
dataset was to predict which individuals made above $50,000 a year. However, all the datasets
consisted partially or entirely of categorical features, which we had to encode as numerical
values before we were able to input them into any machine learning model. We explore the

3benefits and detriments of one-hot encoding, typical categorical encoders, learned embedding,
as well as the Wide & Deep model in categorical feature conversion.

2 Testing and Results

2.1 Tested datasets

We were given six different datasets by Adobe, each of which were split into a large
training and a smaller testing data set. One problem that we encountered early on was that
the Criteo Conversion and Avazu Click Through Rate Prediction datasets were too large to
run on our personal computers. We considered using a cloud computing platform, such as
AWS or Google Cloud Platform, to run these larger datasets, but did not have enough time
to implement this.

Name of Data Set Size Train Size Test Size Features Encoding Method Used Model Used

Criteo Conversion 15,898,883 70% 30%
9 numeric +
9 categorical

none yet, too big to run -

Amazon Employee Access 32,769 70% 30% 9 categorical OHE, learned embedding
random forest, decision trees,
learned embedding

Avazu Click Through
Rate Prediction

40,428,968 50% 50% 20 categorical none yet, too big to run -

KDD 2009 50,000 70% 30%
189 categorical +
20 continuous

learned embedding learned embedding

US Census 1990 2,458,285 70% 30% 67 categorical OHE, learned embedding
random forest, decision trees,
learned embedding

Adult 48,842 67% 33% 8 categorical
OHE, other categorical encoding
methods, learned embedding, WDL

random forest, decision trees,
learned embedding, WDL

Table 1: Our Datasets

2.2 Preliminary Results

For our preliminary results, we focus on those that are most indicative of the performance
of our encoding methods. Additionally, we only display the results for accuracy, which is the
only metric we were able to measure for all of our methods employed. For our one-hot
encoding results, we focus on the accuracies from our test sets, since those are indicative of
how well the model was trained using the training sets. Additionally, we focus on the results
from our comparison of various typical categorical encoding methods for which we had the
best results.

Overall, we found that one-hot encoding functions well for datasets with lower cardinality
or where there are a low number of values within a categorical feature. Conversely, learned
embedding and Wide & Deep learning are comparatively more efficient with larger datasets
of a high cardinality and with a greater number of values in a categorical feature. For future
steps, we recommend investigating the efficacy of mixing methods per individual feature,
as we believe such an approach may prove better than any encoding method individually.
Further, the results we were able to collect are limited, again, by an inability to test on either
of the two larger datasets, and difficulty testing with the mid-sized datasets.

4Dataset Encoding Method ML Model Accuracy
Amazon

(test)
OHE

Random
Forest

94.08%

US Census
(test)

OHE
Random
Forest

99.99%

Amazon
(test)

OHE
Decision

Tree
94.08%

US Census
(test)

OHE
Decision

Tree
100%

Adult OHE
Decision

Tree
85.71%

Adult Base 1
Decision

Tree
85.71%

Adult Base 10
Decision

Tree
85.87%

Adult
Learned

Embedding
- 83.31%

US Census
Learned

Embedding
- 99.99%

KDD
Learned

Embedding
- 98.44%

Amazon
Learned

Embedding
- 98.55%

Adult WDL - 82.64%

Table 2: Preliminary Results

2.3 One-Hot Encoding

The first method of encoding that we explored was one-hot encoding, which converts
categorical variables into a vector of binary variables. When you convert categorical features
into numerical features, the machine learning algorithm might weight one over another based
on their numerical value, which is undesirable if your data do not exhibit ordinal relationships
[5]. By creating a binary vector for each data point to represent its categorical value, we
prevent the algorithm from interpreting the data as averages, or weighting one value over
another.

We standardized and normalized our numerical data, which is necessary to prevent bias.
Standardization, also known as z-score normalization, is the process of putting different
numerical features onto the same scale [23]. This then allows you to compare the scores

5of different variables without one overperforming, or dominating the others because of its
values. The data are rescaled so that they have a mean of 0 and a standard deviation of 1.
This allows algorithms to more easily make predictions and inferences. Standardizing data
is useful in clustering analyses to compare the similarities between features based on certain
distance measures [25].

Normalizing data involves changing the values of numerical columns in a data set to have
a range of [0,1] without changing the relative positions of each value. This is only required
when features have different ranges and is most useful when you are unsure of whether your
data have a Gaussian distribution, as standardization assumes that your data have a Gaussian
distribution [19].

We then put our one-hot encoded categorical data into both decision trees and random
forests to determine which machine learning algorithm was more efficient. Decision trees are
a non-parametric supervised learning algorithm used for classification and regression [14].
They use a model of decisions and their potential outcomes to generate a tree-like graph.
Each node of the graph represents a test that splits the observations in such a way that
the resulting groups are as different from each other as possible, but so that the members
of subgroups created are as similar to each other as possible [29]. These are useful because
the cost of decision trees is logarithmic, which means that they are more efficient, and are
fairly easy to interpret. However, decision trees can also become too complex and end up not
generalizing the data well if they are overfitted. Additionally, they can create biased trees if
the data are not standardized beforehand [14].

Random forest is another type of classification tree that is actually comprised of decision
trees. Each decision tree in this ensemble will generate a class prediction, and the class
prediction that is most prevalent becomes the model’s prediction. However, this only works
if each decision tree is relatively uncorrelated to the next to prevent any particular class from
outperforming the others. Thus, for random forests to perform well, there needs to be some
signal built into our data so that the models are not randomly guessing, and the predictions
made by each decision tree must have low correlations with each other. [29]

2.4 Other Categorical Feature Encoding Methods

We explored a variety of other methods to encode categorical features, ranging from
backward difference encoding to base-N encoding.

Backward difference encoding is a method of encoding categorical features by splitting
each value into a level. Then, the mean of the dependent variable in one level is compared
to that of the dependent variable in the prior adjacent level. Essentially, one specific cate-
gorical feature’s values are broken into levels, and another value that we are examining (the
dependent variable) is compared between each level. For example, if our dataset contains
a categorical feature such as education level, the different values that “education level” can
take on (e.g. high school, associate’s, bachelor’s, graduate level) are split into different levels.
These levels are not ordinal, although you do only compare each level to its prior adjacent
one. Then, we can compare the mean values of a dependent variable of this categorical fea-

6ture in the dataset. New columns are created with each level comparison. An example of this
is shown in Figure 1, where they compare writing levels among different races. There, the
races are split into different levels and each column displays the comparison of one level to
its prior adjacent level. k− n denotes the mean value of the prior adjacent “write” variable,
where n represents the number of the prior adjacent level and k denotes the number of levels
of the categorical feature [17].

Figure 1: An Example of Backward Difference Encoding

Another encoding method that was explored was ordinal encoding, which ensures that
the encoding of the variables retains the ordinal nature of the feature. This is a very typical
method of encoding, although it is best suited for ordinal categorical variables. The method-
ology involves assigning an integer to every distinct object in a feature column. Since our
features do not have an ordinal nature, they are assigned the integer either using the order
that they appear in, or using the alphabetical order of the objects [24].

The last method that we explored was base-N encoding, which encodes categorical features
into arrays of a base-N representation. When N equals the number of different objects there
are, this is equivalent to ordinal encoding [13]. When n = 1, the methodology is essentially
the same as that of one-hot encoding. When n = 2, it is essentially the same as binary
encoding. One main purpose of base-N encoding is to make grid searching easier [18].

Grid searching is a method employed to find the optimal hyperparameters for a particular
model to increase its accuracy [21]. Hyperparameters are external configurations to your
model whose values are not estimatable from your data. Instead, they are typically set by
the practicioner, or set using heuristics and are tuned for a specific practical problem [4].
Thus, when we use grid searching for a specific problem, we are tuning the hyperparameters
to determine what parameters of the model will yield the most skillful predictions.

Another method of estimating the skill of a machine learning model is cross validation,
which uses a limited sample of your data to estimate how the model will perform when
making predictions on non-training data. This is a commonly used method, as it typically
results in a less biased prediction of the model’s skill than that of a simple train/test split of
your data. The methodology involves randomly splitting your data into k groups, using one
of the groups as a test set and the rest as a training set. It does this for all of the groups
and summarizes the skill of the model based on the sample of model evaluation scores of the
k groups [6].

72.5 Learned Embedding

Learned embedding, also known as word embedding or “embedding”, is a distributed
representation of categorical data. Each category is mapped to a vector, where the properties
of that specific vector will be adapted and learned by the neural network of the model [7]. This
created vector space allows individual data points with similar categorical features to be more
closely related. This takes both the benefits of ordinal encoding, by allowing relationships
of data points to be learned, and one-hot encoding by providing a vector representation for
each category [22]. The model we utilize is based upon the model made by Jason Brownlee
for Machine Learning Mastery [7].

Before inputting it into the model, the dataset used must be split into only categorical
features for learned embedding, which is subsequently label encoded for the embedding. The
model itself utilizes Keras and Tensor Flow within a Python environment to create an em-
bedding layer M×N where M is the number of unique entries and N is an arbitrarily assigned
dimension for each categorical variable. We have set N = 10 for our learned embedding model
to receive baseline results. Because the dimension of each of these layers is very high, they
are flattened to a 1 × (M*N) vector to be concatenated together to then be processed as a
Keras Dense Layer which is then processed by the neural network. This is where normalized
numerical data, if present in the data set, can be re-inserted into the embedded data for the
neural network to learn from. Learned embedding allows us to represent high cardinality
categorical variables while utilizing low dimension embedding to preserve the relationship
between the categories allowing the learned model to not rely on memorization but be able
to generalize [26].

2.6 Wide and Deep Learning

2.6.1 Background & Systematic Literature Review

The paper “Wide & Deep Learning for Recommender Systems” [9] explores how wide
and deep learning can be combined to maximize the results of both frameworks. In it, they
introduce how the Wide & Deep learning (WDL) framework can be used to train both feed-
forward neural networks with embeddings and linear models with feature transformations,
which can improve how apps are acquired on a mobile app store.

The wide component of their model creates a generalized linear model using the features,
model parameters, and bias weights. They include transformed features, including cross-
product transformations, which introduces a non-linear component into the model. In the
deep component, they use a feed-forward neural network, which converts high-dimensional
categorical features into embedding vectors. The embedding vectors are eventually fed into
the layers of a deep neural network to reduce dimensionality. When the two components are
combined, the model optimizes all the parameters simultaneously by taking the wide and deep
parts and the weights of their sum into account at the training time. Because this employs
joint training rather than an ensemble, the wide component only needs to complement the
weaknesses of the deep component, meaning that there doesn’t need to be as many cross-

8product transformations. The embeddings are then concatenated together with the reduced
dimension features, which yields a dense vector of high dimensionality. This is then fed
into rectified linear unit (ReLU) layers and the logistic output unit. The model quality is
empirically validated against that of the previous models.

2.6.2 Our Implementation

Wide & Deep Learning (WDL) is used as a method to bypass the need for complex feature
extraction and conversion. Category encoders are implemented as a preprocessing technique
where the encoded data are passed to a classification model to make a prediction. WDL
functions as a fully integrated system that embeds feature encoding into the prediction model.
Essentially, the structure of the manipulated feature space created by the concatenation of
the wide and deep components is passed to a neural network prediction model where feature
encoding is learned as the prediction model trains. The wide component is a linear model
that uses a set of cross-product feature transformations to capture how interactions between
different features correlate to the target variable. Similar to one-hot encoding, this greatly
expands the dimensions of the feature space. The deep learning component uses a feed-
forward neural network to learn dependencies within the data by expanding and repeatedly
reducing the dimensions of the feature space. Generalizations are made by matching similar
dependencies within the feature space. The embedded feature vectors created by the deep
component are dense representations of the original data.

In this model, WDL is implemented by Keras, an open-source neural network library
written in Python. This particular model for converting categorical features to numerical
ones is based on the “Wide and Deep Learning model for Recommender Systems” built by
Heng-Tze Cheng [9]. Provided a dataset, the technique splits input data into numerical
and categorical features. To preprocess the initial data, two transformations are applied.
First, the categorical features are converted to an integer form using a label encoder. This
assigns a new integer to every distinct value within a feature column. The numerical features
are normalized by a simple standard scalar transformation. This normally distributes the
numerical values of the dataset to prevent bias from occurring in the training model.

Two separate methods are implemented to independently form the wide and deep compo-
nents of the model. The wide component is created by applying a polynomial transformation
of degree two to the previously label-encoded categorical features, thus converting the orig-
inal feature space into a higher dimension. Specifically, this generates a new feature matrix
containing every polynomial combination of the original feature space with degree less than
or equal to two. For example, given a feature space (a, b), a polynomial transformation of
degree two converts this to the higher dimensional space (1, a, b, a2, ab, b2). The process used
to build the deep component for the model is more complex. Initially, the dimensions for
the final categorical feature space of the deep component is set to 1

4
, the size of the dimen-

sions from the original categorical feature space. The categorical features are individually
embedded and flattened using imported Keras packages to formulate feature vectors for the
next step. Separately, the previously normalized numerical features are scaled to a higher

9dimensionality through a serious of dot products. Then, the categorical feature vectors and
scaled numerical feature vector are concatenated to create the input for the deep learning
aspect of the model. The dimension of the combined feature space is halved in two separate
actions to extract new, more informative features from the input data using the Keras deep
learning framework. The size of this space is equivalent to the dimension predefined at the
beginning of the deep component method. Finally, the wide and deep components of the
model are concatenated to create the final feature vector used as the input to a predictive
model.

The structure of the algorithm is illustrated in the figure below where wide and deep
learning is applied to the adult dataset. As shown in Figure 2, the eight categorical features
are individually embedded and flattened while the five numerical features are stored as a single
entity and scaled to a higher dimension. This creates nine total feature spaces. These feature
spaces are merged into a single entity and sent through the deep learning framework. This
decreases the dimensions of the dataset and completes the deep component of the algorithm.
Separately, the wide component is formulated by applying a polynomial transform to the
original categorical features from the adult dataset. Lastly, the wide and deep components
are concatenated to achieve the final extracted feature space.

Figure 2: Wide and deep learning model structure

3 Numerical Results and Evaluation

We used metrics such as accuracy, precision, recall, F-beta score, and the area under
the curve (AUC) to compare the effectiveness of the algorithms. Accuracy quantifies the
ratio of correct predictions made to the total number of predictions that an algorithm makes
[10]. Precision quantifies the proportion of true positive (meaning that the algorithm cor-
rectly predicted the positive outcome) made among all positive predictions. Recall is the
proportion of true positives made among all actual positive occurrences [11].

The F-beta score is a way of measuring the accuracy of a model by taking precision
and recall into consideration. It is defined as

Fβ = (1 + β2) · precision · recall

(β2 · precision + recall)
.

10To give more weight to precision, we use a beta value between 0 and 1. To give more
weight to recall, we use a beta value from 1 to positive infinity. When beta = 1, we have
the harmonic mean, which is the point where precision and recall are weighted about the
same [16]. Although we were not able to implement this, it is a particularly useful metric in
ascertaining which model predicts classes best.

The AUC, or area under the curve, measures the area under the curve generated by
plotting the true positive rate against the false positive rate on different classification thresh-
olds. This provides an aggregate measure of the performance of the algorithm across all the
possible classification thresholds. This is useful because the AUC is scale-invariant, mean-
ing that it measures how well the predictions are ranked, and it is classification-threshold-
invariant, meaning that it measures the quality of the model’s predictions regardless of which
classification threshold is used [12].

Dataset Subset Accuracy Precision Recall F-Beta
Amazon Test 94.08% 0.9408 1 0.9695

Train 94.26% 0.9462 1 0.9704
US Census Test 99.99% 0.999 1 0.999

Train 99.99% 0.999 1 0.999

Table 3: OHE Random Forest Results

Dataset Subset Accuracy Precision Recall F-Beta
Amazon Test 94.08% 0.9408 1 0.9695

Train 94.56% 0.9479 0.9971 0.9718
US Census Test 100% 1 1 1

Train 100% 1 1 1

Table 4: OHE Decision Tree Results

One-Hot Ordinal
Backward
Difference

Base 1 Base 2 Base 5 Base 10 Binary

Accuracy 0.8571 0.8567 0.8567 0.8571 0.8533 0.8566 0.8587 0.8533
Precision 0.7301 0.7407 0.7407 0.7302 0.7356 0.7489 0.7585 0.7356

Recall 0.6266 0.6053 0.6053 0.6269 0.5918 0.5897 0.5897 0.5918

Table 5: Comparison of Different Encoding Methods for Adult Dataset

11Dataset Accuracy Precision Recall F-Beta
Adult 83.31% - - -

US Census 99.99% - - -
KDD 98.44% - - -

Amazon 98.55% - - -

Table 6: Learned Embedding Results

Accuracy Precision Recall F-Beta
train 82.64% - - -

Table 7: Adult Dataset (Wide and Deep)

In tables 3 and 4, we observe significantly high values for all our metrics. This is most likely
due to the high-frequency data entries. When there are high cardinality categorical variables,
using one-hot encoding is not ideal because the encoding method typically has trouble with
memorization [18]. Additionally, the high performance of the US Census dataset in both
one-hot encoding and learned embedding may point to some characteristic of the specific
dataset that is causing to perform so well for both these methods.

In table 5, we compared the metrics obtained when encoding the Adult dataset using
different methods and running it using random forest on optimized hyperparameters. We
decided to focus on the accuracy metric as a preliminary way to evaluate the effectiveness
of our encoding methods. Here, one-hot encoding and base-10 encoding appear to be more
effective at predicting outcomes than the other methods employed. Base-1 is highlighted as
well, but in base-N encoding, this should be similar to one-hot encoding [18]. The results
for base-10 encoding are most likely so high because the N chosen is so close to the number
of categorical features in the Adult dataset. Thus, it appears that one-hot encoding is the
best method of all of these, which makes sense, as all the other methods ordinally encode
the features. Thus, when the algorithm evaluates the data and makes a prediction, it is still
treating the variables as though they are ordinal variables, while one-hot encoding prevents
this.

WDL reaps the advantages of both linear and deep learning models by combining them
into a single hybrid system. Linear models are good at “memorizing” specific feature com-
binations but poor at making generalizations across feature columns. Deep learning models
can sometimes be prone to over-generalization when creating the new feature space based on
discovered dependencies within the data. By combining both types of models, WDL tends to
perform well on larger datasets with high-cardinality features. Note that one-hot encoding
is the opposite. Therefore, WDL can shine where traditional category encoders tend to fail.
Tested on Adult, WDL model obtained an accuracy of 82.58%, whereas one-hot encoding
achieved an accuracy of 85.71%. Adult is the smallest dataset where only one column can be

12considered to have relatively high cardinality with a frequency of around 20,000. It is noted
that, in terms of WDL, high-cardinality means each feature has closer to millions/billions of
unique values [20]. Therefore, it makes sense that one-hot encoding performed better than
WDL when tested on the adult dataset. As a final remark, it is somewhat difficult to compare
the results of WDL and learned embedding to other encoding methods because they are not
tested on the same classification model. Other deep learning models that can independently
be used for feature extraction and conversion will be investigated in order to easily compare
results by using the same classification models for predictions.

4 Conclusion

By the above results, we may conclude one-hot encoding proves to be more effective on
datasets that do not contain high-cardinality features, whereas deep learning based networks
perform better on datasets with high-cardinality features. It was difficult to compare the
actual metrics of these methods however, due to the fact that WDL and learned embedding
directly gives us results, while our other encoding methods had to be encoded separately and
then run on a machine learning algorithm. One recommendation would be to parse through a
dataset to evaluate the cardinality of the features to then determine which encoding method
or learning algorithm would be best. Methods that can lead to improvements to machine
learning results are valuable for creating efficient algorithms and allow for further progress
in data science. This research may lead toward more accurate machine learning algorithms
and implementations, but it may also act as a guideline to which encoding method is best
for a particular situation.

References

[1] Betsy Beacom. What is the difference between nominal & ordinal data? https://

sciencing.com/difference-between-nominal-ordinal-data-8088584.html, 2018.

[2] Vikas Bhandary. Introduction to natural language processing for noobs.
https://towardsdatascience.com/introduction-to-natural-language-

processing-for-noobs-8f47d0a27fcc, 2019.

[3] Formplus Blog. What is numerical data? https://www.formpl.us/blog/numerical-

data, 2020.

[4] Jason Brownlee. What is the difference between a parameter and a hyperparam-
eter? https://machinelearningmastery.com/difference-between-a-parameter-

and-a-hyperparameter/, 2017.

[5] Jason Brownlee. Why one-hot encode data in machine learning? https://

machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/,
2017.

https://sciencing.com/difference-between-nominal-ordinal-data-8088584.html
https://sciencing.com/difference-between-nominal-ordinal-data-8088584.html
https://towardsdatascience.com/introduction-to-natural-language-processing-for-noobs-8f47d0a27fcc
https://towardsdatascience.com/introduction-to-natural-language-processing-for-noobs-8f47d0a27fcc
https://www.formpl.us/blog/numerical-data
https://www.formpl.us/blog/numerical-data
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

13[6] Jason Brownlee. A gentle introduction to k-fold cross-validation. https://

machinelearningmastery.com/k-fold-cross-validation/, 2018.

[7] Jason Brownlee. 3 ways to encode categorical variables for deep learn-
ing. https://machinelearningmastery.com/how-to-prepare-categorical-data-

for-deep-learning-in-python/, 2019.

[8] Avkash Chauhan. Categorical encoding, one hot encoding and why use
it? https://aichamp.wordpress.com/2017/02/24/categorical-encoding-one-

hot-encoding-and-why-use-it/, 2017.

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi
Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria
Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide and deep
learning for recommender systems. https://arxiv.org/pdf/1606.07792.pdf, 2016.

[10] Google Developers. Classification: Accuracy. https://developers.google.com/

machine-learning/crash-course/classification/accuracy, 2020.

[11] Google Developers. Classification: Precision and recall. https://developers.google.
com/machine-learning/crash-course/classification/accuracy, 2020.

[12] Google Developers. Classification: Roc curve and auc. https://developers.google.

com/machine-learning/crash-course/classification/roc-and-auc, 2020.

[13] Scikit Learn Developers. Base-n. https://contrib.scikit-learn.org/categorical-
encoding/basen.html, 2016.

[14] Scikit Learn Developers. Decision trees. https://scikit-learn.org/stable/

modules/tree.html, 2019.

[15] Niklas Donges. Data types in statistics. https://towardsdatascience.com/data-

types-in-statistics-347e152e8bee, 2018.

[16] Marcelo Fernandes. F-beta score. http://www.marcelonet.com/snippets/machine-

learning/evaluation-metrix/f-beta-score, 2017.

[17] UCLA Statistical Consulting Group. R library contrast coding systems for cate-
gorical variables. https://stats.idre.ucla.edu/r/library/r-library-contrast-

coding-systems-for-categorical-variables/, 2011.

[18] Jeff Hale. Smarter ways to encode categorical data for machine learn-
ing. https://towardsdatascience.com/smarter-ways-to-encode-categorical-

data-for-machine-learning-part-1-of-3-6dca2f71b159, 2018.

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/how-to-prepare-categorical-data-for-deep-learning-in-python/
https://machinelearningmastery.com/how-to-prepare-categorical-data-for-deep-learning-in-python/
https://aichamp.wordpress.com/2017/02/24/categorical-encoding-one-hot-encoding-and-why-use-it/
https://aichamp.wordpress.com/2017/02/24/categorical-encoding-one-hot-encoding-and-why-use-it/
https://arxiv.org/pdf/1606.07792.pdf
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://contrib.scikit-learn.org/categorical-encoding/basen.html
https://contrib.scikit-learn.org/categorical-encoding/basen.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://towardsdatascience.com/data-types-in-statistics-347e152e8bee
https://towardsdatascience.com/data-types-in-statistics-347e152e8bee
http://www.marcelonet.com/snippets/machine-learning/evaluation-metrix/f-beta-score
http://www.marcelonet.com/snippets/machine-learning/evaluation-metrix/f-beta-score
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
https://towardsdatascience.com/smarter-ways-to-encode-categorical-data-for-machine-learning-part-1-of-3-6dca2f71b159
https://towardsdatascience.com/smarter-ways-to-encode-categorical-data-for-machine-learning-part-1-of-3-6dca2f71b159

14[19] Swetha Lakshmanan. How, when and why should you normalize / standardize /
rescale your data? https://medium.com/@swethalakshmanan14/how-when-and-why-

should-you-normalize-standardize-rescale-your-data-3f083def38ff, 2019.

[20] Jing Li. Predicting income with the census income dataset. https://github.com/

tensorflow/models/blob/master/official/r1/wide_deep/README.md.

[21] Evan Lutins. Grid searching in machine learning: Quick explanation and python
implementation. https://medium.com/@elutins/grid-searching-in-machine-

learning-quick-explanation-and-python-implementation-550552200596, 2017.

[22] Deepak Mishra. Categorical embedding and transfer learning. https:

//towardsdatascience.com/categorical-embedding-and-transfer-learning-

dd3c4af6345d, 2019.

[23] Sebastian Raschka. About feature scaling and normalization. https:

//sebastianraschka.com/Articles/2014_about_feature_scaling.html#about-

standardization, 2014.

[24] Baijayanta Ray. All about categorical variable encoding. https:

//towardsdatascience.com/all-about-categorical-variable-encoding-

305f3361fd02, 2019.

[25] 365 Data Science. Explaining standardization step-by-step. https://365datascience.
com/standardization/, 2019.

[26] Prajwal Shreyas. Deep embeddings for categorical variables (cat2vec). https:

//towardsdatascience.com/deep-embeddings-for-categorical-variables-

cat2vec-b05c8ab63ac0, 2019.

[27] USPS. 42,000 zip codes. https://facts.usps.com/42000-zip-codes.

[28] Rakshith Vasudev. What is one hot encoding? why and when do you have to use
it? https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-

have-to-use-it-e3c6186d008f, 2020.

[29] Tony Yiu. Understanding random forest. https://towardsdatascience.com/

understanding-random-forest-58381e0602d2, 2019.

https://medium.com/@swethalakshmanan14/how-when-and-why-should-you-normalize-standardize-rescale-your-data-3f083def38ff
https://medium.com/@swethalakshmanan14/how-when-and-why-should-you-normalize-standardize-rescale-your-data-3f083def38ff
https://github.com/tensorflow/models/blob/master/official/r1/wide_deep/README.md
https://github.com/tensorflow/models/blob/master/official/r1/wide_deep/README.md
https://medium.com/@elutins/grid-searching-in-machine-learning-quick-explanation-and-python-implementation-550552200596
https://medium.com/@elutins/grid-searching-in-machine-learning-quick-explanation-and-python-implementation-550552200596
https://towardsdatascience.com/categorical-embedding-and-transfer-learning-dd3c4af6345d
https://towardsdatascience.com/categorical-embedding-and-transfer-learning-dd3c4af6345d
https://towardsdatascience.com/categorical-embedding-and-transfer-learning-dd3c4af6345d
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html#about-standardization
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html#about-standardization
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html#about-standardization
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://365datascience.com/standardization/
https://365datascience.com/standardization/
https://towardsdatascience.com/deep-embeddings-for-categorical-variables-cat2vec-b05c8ab63ac0
https://towardsdatascience.com/deep-embeddings-for-categorical-variables-cat2vec-b05c8ab63ac0
https://towardsdatascience.com/deep-embeddings-for-categorical-variables-cat2vec-b05c8ab63ac0
https://facts.usps.com/42000-zip-codes
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

	Introduction
	The Problem

	Testing and Results
	Tested datasets
	Preliminary Results
	One-Hot Encoding
	Other Categorical Feature Encoding Methods
	Learned Embedding
	Wide and Deep Learning
	Background & Systematic Literature Review
	Our Implementation

	Numerical Results and Evaluation
	Conclusion

